SYNTHESES OF 7,8-DIMETHOXY AND 7,8-METHYLENEDIOXY ISOCHROMAN-3-ONES AN EFFICIENT SYNTHESIS OF (\pm) TETRAHYDROPALMATINE AND (\pm) CANADINE

N.J. Narasimhan , R.J. Mali and B.K. Kulkarni

Department of Chemistry, University of Poona, Pune-411 007, India.

Efficient syntheses of the title compounds, using heteroatom Summary directed lithiation reaction is described.

Isochroman-3-ones are important synthons. They furnish benzocyclobutenes which can undergo cycloaddition reactions leading to a variety of compounds and also provide efficient route to the berbine alkaloids.

Isochroman-3-ones are generally synthesised by methods involving acid catalysed aromatic substitution reactions. For this reason, certain methoxy substituted isochroman-3-ones are not readily synthesised. 7,8-Methylenedioxy isochroman-3-one 2 is not synthesised so far. 7,8-Dimethoxy isochroman-3-one $\underline{1}$ is synthesised only from difficultly available starting materials $^2.$

It is now well known that heteroatom directed lithiation reaction an lead to aromatic substitution not favoured in the acid catalysed reaction. Thus for example, we had treated NN-dimethyl-3-methoxy benzylamine with BuLi followed by ethylene oxide to introduce a hydroxyethyl group at 2-position. The compound was further processed to furnish NN-dimethyl-5-methoxy tetrahydroisoguinolinium iodide. This feature of lithiation reaction is now used to synthesise both 1 and 2 as shown below.

- (a) n-BuLi/ether/0°, 1 h; (b) (CH2O)n/RT, 15 h;
- (c) ClCCCEt/benzene/RT, 5 min; (d) KCN/DMF/RT, 8 h; (e) KCH/EtCH/reflux, 3 h; (f) H₃O.

$$\underline{1} \cdot R = -0 \text{ CH}_3$$

$$\frac{1}{2}$$
. R-R = -0 CH₂

The ready availability of 1 and 2 has further made it possible to synthesise (\pm) tetrahydropalmatine 3 and (\pm) canadine 4. The scheme is as follows :

- (a) Homoveratrylamine or Homopiperonylamine/EtOH/RT, 5 h;
- (b) PCl₅/CHCl₃/RT, 20 min;
- (c) NaBH_A/MeOH/O° RT, 45 min.

$$3 \cdot R = R_1 = -0CH_3$$

In the above sequence use of PCl₅/CHCl₃ (at RT) in the Bischler-Napieralski synthesis gives much better yield than POCl3/toluene (at reflux temperature).

Two lithiation routes are known for the synthesis of (\pm) tetrahydropalmatine. One, where lithiation of (\pm) laudanosine is the key step⁵, proceeds in poor yields. The other, where lithiation of NN-dimethyl-3,4--dimethoxy benzylamine is the key step6, has a large number of steps. The acid catalysed method of Kametani 7 is also long and involves protection and deprotection.

The method described above, to our mind, appears to be the most efficient route for obtaining the title compounds.

References

- R.J. Spangler and B.G. Beckmann, Tetrahedron Lett., 2517 (1976) and references cited therein.
- W. Nagata, H. Itazaki, K. Okada, T. Wakabayashi, K. Shibata and N. Tokutake, Chem. Pharm. Bull. (Japan), 23, 2867 (1975). 2.
- For a review see H.W. Gschwend and H.R. Rodriguez, in Organic Reactions, John Wiley and Sons, New York, Vol. 26, 1 (1979).
- N.S. Narasimhan and B.H. Bhide, Tetrahedron Lett., 4159 (1968). 4.
- N.S. Narasimhan and B.H. Bhide, Chem. and Ind., 621 (1969). 5.
- 6. R.T. Dean and H. Rapoport, <u>J.Org.Chem.</u>, <u>43</u>, 2115 (1978).
- T. Kametani and M. Ihara, J.Chem.Soc. C, 530 (1967).
- The first figure indicates the yield in (\pm) tetrahydropalmatine series and the second in (±) canadine series.

(Received in UK 5 May 1981)